首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2512篇
  免费   179篇
  国内免费   249篇
化学   2358篇
晶体学   26篇
力学   130篇
综合类   4篇
数学   47篇
物理学   375篇
  2024年   2篇
  2023年   169篇
  2022年   78篇
  2021年   94篇
  2020年   182篇
  2019年   117篇
  2018年   98篇
  2017年   127篇
  2016年   148篇
  2015年   162篇
  2014年   180篇
  2013年   191篇
  2012年   177篇
  2011年   134篇
  2010年   102篇
  2009年   126篇
  2008年   109篇
  2007年   126篇
  2006年   137篇
  2005年   85篇
  2004年   29篇
  2003年   42篇
  2002年   49篇
  2001年   85篇
  2000年   39篇
  1999年   87篇
  1998年   61篇
  1996年   3篇
  1990年   1篇
排序方式: 共有2940条查询结果,搜索用时 15 毫秒
1.
Recent developments in the study of the formation of self-assembled surfactant structures and multilayers at the solid-solution interface are presented. It covers a wide range of phenomena, but in this review the main focus is on the surface structures formed from dilute solution in the presence of electrolyte and in more concentrated solutions. Their formation under those conditions are set in the wider context of the more extensive observations of their occurrence in more complex polymer-surfactant mixtures. Although the sequential adsorption methods using layer-by-layer approaches are more well established for polyelectrolytes and their associated mixtures, the main emphasis is on the self-assembly. The opportunities to manipulate wetting properties and to generate enhanced wetting characteristics are discussed. The potential applications, modifying wetting behaviour, efficient near surface reservoir for enhanced and prolonged delivery of active components, and for the development of a range of smart functionalised surfaces are highlighted.  相似文献   
2.
Bimetallic AgPd nanoparticles have been synthesized before, but the interfacial electronic effects of AgPd on the photocatalytic performance have been investigated less. In this work, the results of hydrogen evolution suggest that the bimetallic AgPd/g-C3N4 sample has superior activity to Ag/g-C3N4 and Pd/g-C3N4 photocatalysts. The UV/Vis diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, CO adsorption diffuse reflectance FTIR spectroscopy, and FTIR results demonstrate that in the AgPd/g-C3N4, the surface electronic structures of Pd and Ag are changed, which is beneficial for faster photogenerated electron transfer and greater H2O molecule adsorption. In situ ESR spectra suggest that, under visible light irradiation, there is more H2O dissociation to radical species on the AgPd/g-C3N4 photocatalyst. Furthermore, DFT calculations confirm the interfacial electronic effects of AgPd/g-C3N4, that is, Pdδ−⋅⋅⋅Agδ+, and the activation energy of H2O molecule dissociation on AgPd/g-C3N4 is the lowest, which is the main contributor to the enhanced photocatalytic H2 evolution.  相似文献   
3.
By 5-h reaction of cis-[RuIICl2(DMSO)4] (M2) with K102-P2W17O61] (M3) in ice-cooled, HCl-acidic aqueous solution, a water-soluble 1:2-type diamagnetic ruthenium(II) complex of formula K18[RuII(DMSO)2(P2W17O61)2]·35H2O (M1) was unexpectedly obtained as an analytically pure, homogeneous tan-colored solid, in which two DMSO ligands are coordinated to the ruthenium(II) atom. The cytotoxic potential of the complex was tested on C33A, DLD-1, and HepG-2 cancer cells and human normal embryonic lung fibroblasts cell MRC-5; the viability of the treated cells was evaluated by MTT assay. The mode of cell death was assessed by morphological study of DNA damage and apoptosis assays. Compound M1 induced cell death in a dose-dependent manner, and the mode of cell death was essentially apoptosis though necrosis was also noticed. Cell cycle analysis by flow cytometry indicated that M1 caused cell cycle arrest and accumulated cells in S phase.  相似文献   
4.
《中国化学快报》2020,31(5):1332-1336
The copper-catalyzed directed dearomatization of indoles with the assistance of directing groups has been developed for the synthesis of 2,3-diazido indolines with good yields and excellent diastereoselectivities in aqueous solution. The resultant 2,3-diazides can be smoothly converted to other functional groups, including vicinal diamines, triazoles and benzotriazoles, in a single step.  相似文献   
5.
TiO2-based photocatalysis has become a viable technology in various application fields such as (waste)water purification, photovoltaics/artificial photosynthesis, environmentally friendly organic synthesis and remediation of air pollution. Because of the increasing impact of bad air quality worldwide, this review focuses on the use and optimization of TiO2-based photocatalysts for gas phase applications. Over the past years various specific aspects of TiO2 photocatalysis have been reviewed individually. The intent of this review is to offer a broad tutorial on (recent) trends in TiO2 photocatalyst modification for the intensification of photocatalytic air treatment. After briefly introducing the fundamentals of photocatalysis, TiO2 photocatalyst modification is discussed both on a morphological and an electronic level from the perspective of gas phase applications. The main focus is laid on recent developments, but also possible opportunities to the field. This review is intended as a solid introduction for researchers new to the field, as well as a summarizing update for established investigators.  相似文献   
6.
In this article, a novel zwitterionic conjugated polyelectrolyte containing tetraphenylethene unit was synthesized via Pd‐catalyzed Sonogashira reaction. The resulting polymer (P2), which exhibited typical aggregation‐induced emission (AIE) properties, was weakly fluorescent in dilute DMSO solution and showed bright fluorescence emissions when aggregated in DMSO/water mixtures or fabricated into conjugated polymer nanoparticles (CPNs). The nanoparticles from P2 could be prepared by reprecipitation method with an average diameter around 23 nm. Notably, the cell‐staining efficiencies of lipid‐P2 nanoparticles could be enhanced with lipid encapsulation and these nanoparticles were endocytosed via caveolae‐mediated and clathrin‐mediated endocytosis pathways. Furthermore, the lipid‐P2 nanoparticles with low cytotoxicity, high photostability and efficient cell staining ability could be employed for in vitro detection of Fe3+ ions in A549 cells. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1686–1693  相似文献   
7.
《中国化学快报》2020,31(12):2991-2992
The recent development of selective oxidation of aromatic sulfides with molecular oxygen was highlighted. The sulfoxides and sulfones could be obtained by simply switching the reaction media, i.e., bis(2-butoxyethyl)ether (BBE) or poly(ethylene glycol)dimethyl ether (PEGDME). The application of the high-boiling-point polyether as an initiator and green media can eliminate the need of large quantities of additives and volatile solvents. This strategy represents an economic and eco-friendly method that could find potential applications.  相似文献   
8.
《中国化学快报》2020,31(6):1415-1421
Electrocatalytic CO_2 reduction(CO_2 ER) into formate is a desirable route to achieve efficient transformation of CO_2 to value-added chemicals,however,it still suffers from limited catalytic activity and poor selectivity.Herein,we develop a hybrid electrocatalyst composed of bismuth and bismuth oxide nanoparticles(NPs) supported on nitrogen-doped reduced graphene oxide(Bi/Bi_2 O_3/NrGO) nanosheets prepared by a combined hydrothermal with calcination treatment.Thanks to the combination of undercoordinated sites and strong synergistic effect between Bi and Bi_2 O_3,Bi/Bi_2 O_3/NrGO-700 hybrid displays a promoted CO2 ER catalytic performance and selectivity for formate production,as featured by a small onset potential of-0.5 V,a high current density of-18 mA/cm~2,the maximum Faradaic efficiency of85% at-0.9 V,and a low Tafel slope of 166 mV/dec.Experimental results reveal that the higher CO_2 ER performance of Bi/Bi_2 O_3/NrGO-700 than that of Bi NPs supported on NrGO(Bi/NrGO) can be due to the partial reduction of Bi_2 O_3 NPs into Bi,which significantly increases undercoordinated active sites on Bi NPs surface,thus boosting its CO_2 ER performance.Furthermore,a two-electrode device with Ir/C anode and Bi/Bi_2 O_3/NrGO-700 cathode could be integrated with two alkaline batteries or a planar solar cell to achieve highly active water splitting and CO_2 ER.  相似文献   
9.
《中国化学快报》2020,31(9):2254-2258
In the work, we successfully explore a two-step hydrothermal method for scalable synthesis of the hybrid sodium titanate (NaTi8O13/NaTiO2) nanoribbons well in-situ formed on the multi-layered MXene Ti3C2 (designed as NTO/Ti3C2). Benefiting from the inherent structural and componential superiorities, the resulted NTO/Ti3C2 composite exhibits long-duration cycling stability and superior rate behaviors when evaluated as a hybrid anode for advanced SIBs, which delivers a reversible and stable capacity of ∼82 mAh/g even after 1900 cycles at 2000 mA/g for SIBs.  相似文献   
10.
For the degradation of chitosan, a novel physical method of self-resonating cavitation with strong cavitation effects was investigated in this paper. The effects of initial concentration, pH, temperature, inlet pressure and cavitation time on the degradation efficiency of chitosan were evaluated. It was found that the degradation efficiency was positively correlated with temperature and cavitation time, but was negatively correlated with the solution concentration. The degradation efficiency was maximized at pH of 4.4 and inlet pressure of 0.4 MPa. Under the experimental conditions, the intrinsic viscosity of chitosan solution was reduced by 92.2%, which was twice as high as the degradation efficiency where a Venturi tube cavitator was used. The viscosity-average molecular weights of initial and degraded chitosan were 651 and 104 kD, respectively. The deacetylation degree of chitosan slightly decreased from 89.34% to 88.05%. Structures and polydispersity of initial and degraded chitosan were measured by Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance hydrogen spectroscopy (1H NMR), X-ray diffraction (XRD) and gel permeation chromatography (GPC). The results showed that the degradation process did not change the natural structure of chitosan. XRD peaks of the original chitosan were observed at 2θ of 9.59° and 20.00°, and the one at 2θ of 20.00° was obviously weakened after the degradation process, which indicated that the crystallinity of chitosan decreased significantly after the degradation. The polydispersity index of chitosan samples decreased from 3.17 to 2.75, indicating that the molecular-weight distribution of products after the degradation was more concentrated. The results proved that self-resonating cavitation prompted the degradation of chitosan and could reduce the polydispersity of the products for the production of oligochitosan with homogeneous molecular weights.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号